ag|平台|app

<acronym id="k82sk"><small id="k82sk"></small></acronym><acronym id="k82sk"></acronym>
<acronym id="k82sk"><center id="k82sk"></center></acronym><acronym id="k82sk"></acronym>
<rt id="k82sk"><optgroup id="k82sk"></optgroup></rt>
<acronym id="k82sk"><center id="k82sk"></center></acronym><acronym id="k82sk"><div id="k82sk"></div></acronym>
<acronym id="k82sk"></acronym><acronym id="k82sk"><center id="k82sk"></center></acronym>
<rt id="k82sk"><small id="k82sk"></small></rt>
<sup id="k82sk"></sup>
<rt id="k82sk"><small id="k82sk"></small></rt>
<tr id="k82sk"><optgroup id="k82sk"></optgroup></tr><tr id="k82sk"><optgroup id="k82sk"></optgroup></tr><rt id="k82sk"><small id="k82sk"></small></rt>

Products & Solutions / By Solution / NeuroFusion / Product Info


NeuroFusion
Product Info



Neural network C++ and C# library

  

Programming neural networks now easy

Alyuda NeuroFusion is a general-purpose neural network library that can be used to create, train and apply constructive neural networks for solving both regression and classification problems.

The NeuroFusion neural library is available in two editions: classic neural library for VB, Delphi and C++ neural networks programming and .Net library for C# neural programming. With NeuroFusion you don't need to learn neural net theory, the library can automatically define the best neural network architecture and training parameters for your dataset.


Enhance your software

  

Save development time

Artificial Intelligence provides the key neural library functionality that enhances customer satisfaction, increases forecasting and data analysis accuracy as well as enabling your software to outpace the competition and distinguishes it from other similar products.

All theoretical information is hidden inside the neural network library. You do not have to do any tweaking using different training parameters or experiment with different neural network architectures, activation functions, stopping conditions, and so on. Your neural programming time is reduced significantly due to the fact that you will interface with an easy API with a minimum set of neural network library functions.


<acronym id="k82sk"><small id="k82sk"></small></acronym><acronym id="k82sk"></acronym>
<acronym id="k82sk"><center id="k82sk"></center></acronym><acronym id="k82sk"></acronym>
<rt id="k82sk"><optgroup id="k82sk"></optgroup></rt>
<acronym id="k82sk"><center id="k82sk"></center></acronym><acronym id="k82sk"><div id="k82sk"></div></acronym>
<acronym id="k82sk"></acronym><acronym id="k82sk"><center id="k82sk"></center></acronym>
<rt id="k82sk"><small id="k82sk"></small></rt>
<sup id="k82sk"></sup>
<rt id="k82sk"><small id="k82sk"></small></rt>
<tr id="k82sk"><optgroup id="k82sk"></optgroup></tr><tr id="k82sk"><optgroup id="k82sk"></optgroup></tr><rt id="k82sk"><small id="k82sk"></small></rt>

www德赢

足球007足球比分即时比分

足彩app排名

天福彩票网登录

十大中文博彩公司排名

棋乐游网址

pt电子游戏平台

汇爵国际彩票

www.444yl